Ultralight boron nitride aerogels via template-assisted chemical vapor deposition
نویسندگان
چکیده
Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 (°)C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m(2) g(-1), 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm(-3), much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools.
منابع مشابه
Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization.
Manufacturing of aerogels and membranes from hexagonal boron nitride (h-BN) is much more difficult than from graphene or graphene oxides because of the poor dispersibility of h-BN in water, which limits its exfoliation and preparation of colloidal solutions. Here, a simple, one-step mechano-chemical process to exfoliate and functionalize h-BN into highly water-dispersible, few-layer h-BN contai...
متن کاملA Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition
In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...
متن کاملSynthesis of highly crystalline sp2-bonded boron nitride aerogels.
sp(2)-Bonded boron nitride aerogels are synthesized from graphene aerogels via carbothermal reduction of boron oxide and simultaneous nitridation. The color and chemical composition of the original gel change dramatically, while structural features down to the nanometer scale are maintained, suggesting a direct conversion of the carbon lattice to boron nitride. Scanning and transmission electro...
متن کاملPatterned Growth of Long and Clean Boron Nitride Nanotubes on Substrates
For the first time, patterned growth of boron nitride nanotubes (BNNTs) on Si substrates has been achieved by catalytic chemical vapor deposition (CCVD). Following the boron oxide chemical pathway and our growth vapor trapping approach, high quality and quantity BNNTs can be produced. Effective catalysts have been found to facilitate the growth of BNNTs, while some critical parameters of the sy...
متن کامل